);position:absolute;right:0;width:10px;top:calc(50% + 0px);transform:translateY(-50%)}}@media (min-width:1200px){.dqlabs-header nav ul>li>a{font-size:18px}}@media (min-width:992px) and (max-width:1365px){.dqlabs-header .logo img{max-height:32px}.dqlabs-header nav ul>li{font-size:14px;margin-right:25px}}@media (max-width:1199px){.dqlabs-header{padding:5px 0!important}.dqlabs-header .container{position:relative;display:flex;justify-content:space-between;align-items:center;padding:0 20px}.dqlabs-header .menu-container{width:auto!important}.dqlabs-header .logo{margin-top:2px}.dqlabs-header .logo img{max-height:32px}.dqlabs-header nav,.dqlabs-header .btns-right{display:none!important}}@media (max-width:679px){.dqlabs-header .logo img{max-height:35px}.dqlabs-mega-menu{border:unset}}.dqlabs-card{width:100%;box-shadow:0 1px 10px #74747421;border-radius:20px;background-color:var(--white)}.dqlabs-footer-links aside ul li a{color:#fff}.dqlabs-footer-links aside ul li{margin-bottom:10px;font-size:16px}.dqlabs-hero-bg{position:relative}.dqlabs-hero-bg:after{content:"";background:var(--primary-color-dark)!important;position:absolute;top:-105px;left:0;width:100%;height:calc(100% + 0px);z-index:1}div#eut-theme-wrapper{padding:123px 0 0 0}@media (max-width:480px){div#eut-theme-wrapper{padding:63px 0 0 0}}.initial-message-bubble{height:35px}.footer_bubble{width:50px;height:50px;background-color:#e60000;border-radius:50%;text-align:center;position:fixed;bottom:50px;right:30px;z-index:999;color:#fff;padding:14px}.footer_bubble img{margin-top:-8px}.first_bubble{position:fixed;right:0;z-index:999;bottom:9px}.initial-message-bubble{position:relative;border:1px solid #e60000;background:#e60000;box-shadow:0 5px 20px rgb(0 0 0/10%);border-radius:4px;width:144px;padding:0 10px 0;font-size:13px;margin-right:30px}.initial-message-bubble .initial-message-avatar{position:absolute;left:0;right:0}.justify-center{display:flex;justify-content:center!important}.chat-head{position:relative}.dVFiCr{display:inline-flex;-webkit-box-align:center;align-items:center;-webkit-box-pack:center;justify-content:center;box-sizing:content-box;font-size:initial;overflow:hidden;position:relative;border-radius:50%;height:48px;width:48px}.initial-message-text{white-space:pre-line;text-overflow:ellipsis;overflow:hidden;color:#ffff!important;font-weight:700}:root{--box-shadow:0px 1px 10px #74747430;--hoverColor:#e60000}.eut-element.eut-text p{margin-bottom:10px}@media only screen and (max-width:768px){.caseStudiesDetailPage .eut-column-1-3{padding-left:25px!important}.caseStudiesDetailPage .eut-gallery .eut-isotope-item{width:85px!important;margin-right:15px!important}}@media (max-width:480px){.initial-message-bubble{width:150px!important}}.videoimg{max-width:40px}.eut-item .videoimg{display:none!important}.footer_bubble{width:50px;height:50px;background-color:#e60000;border-radius:50%;text-align:center;position:fixed;bottom:50px;right:30px;z-index:999;color:#fff;padding:14px}.footer_bubble img{margin-top:-8px}.first_bubble{position:fixed;right:0;z-index:999;bottom:9px}.initial-message-bubble{position:relative;border:1px solid #e60000;background:#e60000;box-shadow:0 5px 20px rgb(0 0 0/10%);border-radius:4px;width:144px;padding:0 10px 0;font-size:13px;margin-right:30px}.initial-message-bubble .initial-message-avatar{position:absolute;left:0;right:0}.justify-center{display:flex;justify-content:center!important}.chat-head{position:relative}.dVFiCr{display:inline-flex;-webkit-box-align:center;align-items:center;-webkit-box-pack:center;justify-content:center;box-sizing:content-box;font-size:initial;overflow:hidden;position:relative;border-radius:50%;height:48px;width:48px}.initial-message-text{white-space:pre-line;text-overflow:ellipsis;overflow:hidden;color:#ffff!important;font-weight:700}@media only screen and (max-width:768px){.eut-row{display:-ms-flexbox!important;display:flex!important;-ms-flex-wrap:wrap!important;flex-wrap:wrap!important}body{font-size:16px;font-family:Arimo;font-weight:400;line-height:30px}h1{font-family:Inter;font-weight:600;font-style:normal;font-size:36px;text-transform:none;line-height:53px}h2{font-family:Inter;font-weight:600;font-style:normal;font-size:32px;text-transform:none;line-height:46px}h4{font-family:Inter;font-weight:600;font-style:normal;font-size:24px;text-transform:none;line-height:32px}h5{font-family:Inter;font-weight:800;font-style:normal;font-size:20px;text-transform:none;line-height:26px}h6{font-family:Inter;font-weight:600;font-style:normal;font-size:18px;text-transform:none;line-height:28px}#eut-main-content{background-color:#fff}a{color:#999}.eut-light-overlay:before{background-color:#fff}#eut-main-content{color:#676767}#eut-main-content h2,#eut-main-content h4{color:#19242f}.lazyload{background-image:none!important}.lazyload:before{background-image:none!important}#eut-body{background-repeat:no-repeat;background-size:contain;background-attachment:fixed}.vc_custom_1675714143194{padding-left:4%!important}a{color:unset}.uuid-22b9fcb9-c328-4346-ba12-809be233da54{fill:#e60000;stroke:#e60000;stroke-miterlimit:10;stroke-width:.8px}.uuid-ef75e9fc-daf1-4b04-a8ec-afb91ebe7b3f{fill:#fff}.uuid-22b9fcb9-c328-4346-ba12-809be233da54{fill:#e60000;stroke:#e60000;stroke-miterlimit:10;stroke-width:.8px}.uuid-ef75e9fc-daf1-4b04-a8ec-afb91ebe7b3f{fill:#fff}body.single-portfolio{overflow-x:unset!important}body.single-portfolio .eut-isotope-container{height:55px!important}}
Leveraging DQLabs to eliminate data silos, improve accuracy, and enable data-driven decisions for enhanced public safety and community services.
Download Case StudyThe Public Safety company, one of the top-ranked metropolitan areas in the United States, is on a mission to strengthen outreach, city-wide planning, and engagement services using data. The client provides a wide range of services to its residents, including public safety, utilities, transportation, and parks and recreation. To efficiently manage these services and make data-driven decisions, the city relies on a large amount of data from various sources. However, the data quality of these sources has been a challenge for the city, leading to inaccurate and inconsistent data that hinders decision-making.
Some of the primary data quality challenges faced by the Public Safety company include data silos, data inconsistency, and data completeness. The city has numerous departments and systems that store and manage data, making it difficult to integrate data from different sources. This leads to data silos, which prevent the city from having a complete view of its data. Additionally, inconsistencies in data definitions and data entry practices have led to data quality issues, such as data duplication, missing data, and incorrect data. Finally, incomplete data sets make it difficult to draw meaningful insights and inform data-driven decisions. To overcome these challenges, the client needs to implement data quality management practices and a modern data quality platform that ensures data accuracy, completeness, and consistency.
Let our experts show you the combined power of Data Observability, Data Quality, and Data Discovery.
Book a Demo